

Reaccredited 'A+ 'Grade by NAAC(CGPA:3.68/4.00) College with Potential for Excellence by UGC DST-FIST Supported & STAR College Scheme by DBT

## **Faculty of Science**

Bachelor of Science (B.Sc.)

SUBJECT: MATHEMATICS

**B.Sc. III Semester** Paper- Elective

Abstract Algebra and Linear Algebra

### **Course Outcomes**

| CO.No. | Course Outcomes                                                                                                                                                                                               | Cognitive<br>Level |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| CO1    | Recognize the algebraic structures as a group, and classify them as abelian, cyclic and permutation groups, etc.                                                                                              | U                  |
| CO2    | Link the fundamental concepts of groups and symmetrical figures.                                                                                                                                              | Ap                 |
| CO3    | Analyze the subgroups of cyclic groups.                                                                                                                                                                       | U                  |
| CO4    | Explain the significance of the notion of cosets, normal subgroups, and quotient groups.                                                                                                                      | Е                  |
| CO5    | The fundamental concept of rings, fields, subrings, integral domains and the corresponding morphisms                                                                                                          | U                  |
| CO6    | Analyze whether a finite set of vectors in a vector space is linearly independent. Explain the concepts of basis and dimension of a vector space.                                                             | U                  |
| CO7    | Understand the linear transformations, rank and nullity, matrix of a linear transformation, algebra of transformations and change of basis.                                                                   | U                  |
| CO8    | Compute the characteristic polynomial, eigen values, eigen vectors, and eigen spaces, as well as the geometric and the algebraic multiplicities of an eigen value and apply the basic diagonalization result. | Ap                 |

Credit and Marking Scheme

|        | Credits | Marks    |          | Total Marks   |
|--------|---------|----------|----------|---------------|
|        |         | Internal | External | _ Total Warks |
| Theory | 4       | 40       | 60       | 100           |

Mary 26/7/24

Reaccredited 'A+ 'Grade by NAAC(CGPA:3.68/4.00) College with Potential for Excellence by UGC DST-FIST Supported & STAR College Scheme by DBT

| Total | 4 | 100 |
|-------|---|-----|
|       |   |     |

### **Evaluation Scheme**

|        |                              | Marks                    |  |  |
|--------|------------------------------|--------------------------|--|--|
|        | Internal                     | External                 |  |  |
| Theory | 3 Internal Exams of 20 Marks | 1 External Exams         |  |  |
|        | (During the Semester)        | (At the End of Semester) |  |  |
|        | (Best 2 will be taken)       |                          |  |  |

### **Content of the Course** Theory

No.of Lectures(in hours per week):4.5 Hrs.per week

Total No. of Lectures: 60Hrs.

Maximum Marks: 60

| Unit | Topics                                                                                                         | No. of Lectures |
|------|----------------------------------------------------------------------------------------------------------------|-----------------|
|      | <ul><li>1.1 Historical background:</li><li>1.1.1. A brief historical background of the Algebrain the</li></ul> |                 |
| I    | context of India and Indian heritage and culture  1.1.2. A brief biography of Brahmagupta                      | 20              |
|      | 1.2 Groups, Subgroups and their basic properties 1.3 Cyclic groups                                             |                 |
|      | 1.4 Coset decomposition 1.5 Lagrange's and Fermat's theorem                                                    |                 |
|      | 1.6 Normal subgroups 1.7 Quotient groups                                                                       |                 |
|      | 2.1 Homomorphism, Kernel of homomorphism and Isomorphism of groups                                             |                 |
| II   | 2.2 Fundamental theorem of homomorphism 2.3 Transformation and permutation groupSn(n<5)                        | 20              |
|      | <ul><li>2.4 Cayley's theorem</li><li>2.5 Group automorphism</li><li>2.6 Inner automorphism</li></ul>           |                 |
| Y    | 2.7 Group of automorphisms                                                                                     |                 |
|      | <ul><li>3.1 Definition and basic properties of rings</li><li>3.2 Ring homomorphism</li></ul>                   |                 |
|      | 3.3 Sub ring 3.4 Ideals                                                                                        | 20              |

Water 26/7/221

Reaccredited 'A+ 'Grade by NAAC(CGPA:3.68/4.00)
College with Potential for Excellence by UGC
DST-FIST Supported & STAR College Scheme by DBT

| III | 3.5 Quotient ring                                 |    |
|-----|---------------------------------------------------|----|
|     | <b>3.6</b> Polynomial ring                        |    |
|     | 3.7 Integral domain                               |    |
|     | <b>3.8</b> Field                                  |    |
|     | 4.1 Definition and examples of Vector space       |    |
|     | 4.2 Subspaces                                     |    |
|     | 4.3 Sumand direct sum of subspaces                |    |
|     | <b>4.4</b> Linear span, Linear dependence, linear |    |
| IV  | independence and their basic properties           | 28 |
|     | <b>4.5</b> Basis                                  |    |
|     | 4.6 Finite dimensional vector space and dimension |    |
|     | <b>4.6.1</b> Existence theorem                    |    |
|     | <b>4.6.2</b> Extension theorem                    |    |
|     | <b>4.6.3</b> Invariance of the number of elements |    |
|     | . <b>4.7</b> Dimension of sum of subspaces        |    |
|     | 4.8 Quotient space and its dimension              |    |

### References

#### Text Books:

- 1. I.N.Herstein:Topics in Algebra, Wiley Eastern Ltd. New Delhi.1977.
- 2. K. B. Datta: Matrix and Linear Algebra, Prentice Hall of India Pvt. Ltd. New Delhi.
- 3. Gerard G. Emch, R. Sridharan and M.D. Srinivas: Contributions to the History of Indian Mathematics, Hindustan Book Agency, Vol.3,2005.
- 4. मध्यप्रदेशहिंदीग्रंथअकादमीकीपुस्तके।

#### Reference Books:

- 1. Surjeet Singh and Qazi Zameeruddin: Modern Algebra, Vikas Publishing House Pvt Ltd; Eighth edition, 2006.
- 2. N. Jacobson: Basic Algebra. Vol. I and II, W. II Freeman, 1980.
- 3. I.S. Luther and I.B.S. Passi: Algebra. Vol.I and II, Narosa Publishing House, 1997.
- 4. Shanti Narayan: A text Book of Modern Abstract Algebra, S. Chand and Company. New Delhi, 1967.
- A.K. Vasishtha and A.R. Vasishtha: Modern Algebra, Krishna Publication; 68<sup>th</sup> edition, 2015.
- K.Hoffiman and R. Kunze: Linear Algebra. 2<sup>nd</sup> Edition, Prentice Hall Engle wood Cliffs, New Jersey, 1971.
- A.R. Vasishtha and J.N. Sharma: Linear Algebra, Krishna Prakashan Media (P)Ltd., 2019.

8. Bibhutibhusan Datta and Avadhesh Narayan Singh: History of Hindu Mathematics, Asia Publishing House, 1962.

Jolang:

Mand 124.

Sjour

1

Reaccredited 'A+ 'Grade by NAAC(CGPA:3.68/4.00)
College with Potential for Excellence by UGC
DST-FIST Supported & STAR College Scheme by DBT

(P)Ltd., 2019.

8. Bibhutibhusan Datta and Avadhesh Narayan Singh: History of Hindu Mathematics, Asia Publishing House, 1962.

Mandry M.

July 26/2/24

Bhuni

Precedo.

Johans

Sjourn

M